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CHAPTER 1

Statistics in Engineering
and Science

In this chapter we introduce basic statistical concepts and termi-
nology that are fundamental to the use of statistics in experimental
work. These concepts include:

the role of statistics in engineering and scientific
experimentation,

the distinction between samples and populations,

relating sample statistics to populations parameters, and
e characterizing deterministic and empirical models.

The term scientific suggests a process of objective investigation that ensures
that valid conclusions can be drawn from an experimental study. Scientific
investigations are important not only in the academic laboratories of research
universities but also in the engineering laboratories of industrial manufactur-
ers. Quality and productivity are characteristic goals of industrial processes,
which are expected to result in goods and services that are highly sought by
consumers and that yield profits for the firms that supply them. Recognition is
now being given to the necessary link between the scientific study of indus-
trial processes and the quality of the goods produced. The stimulus for this
recognition is the intense international competition among firms selling similar
products to a limited consumer group.

The setting just described provides one motivation for examining the role
of statistics in scientific and engineering investigations. It is no longer satisfac-
tory just to monitor on-line industrial processes and to ensure that products are
within desired specification limits. Competition demands that a better prod-
uct be produced within the limits of economic realities. Better products are
initiated in academic and industrial research laboratories, made feasible in
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pilot studies and new-product research studies, and checked for adherence
to design specifications throughout production. All of these activities require
experimentation and the collection of data. The definition of the discipline of
statistics in Exhibit 1.1 is used to distinguish the field of statistics from other
academic disciplines and is oriented toward the experimental focus of this
text. It clearly identifies statistics as a scientific discipline, which demands the
same type of rigor and adherence to basic principles as physics or chemistry.
The definition also implies that when problem solving involves the collec-
tion of data, the science of statistics should be an integral component of
the process.

EXHIBIT 1.1

Statistics. Statistics is the science of problem-solving in the presence of variability.

Perhaps the key term in this definition is the last one. The problem-solving
process involves a degree of uncertainty through the natural variation of results
that occurs in virtually all experimental work.

When the term statistics is mentioned, many people think of games of
chance as the primary application. In a similar vein, many consider statisticians
to be “number librarians,” merely counters of pertinent facts. Both of these
views are far too narrow, given the diverse and extensive applications of
statistical theory and methodology.

Outcomes of games of chance involve uncertainty, and one relies on proba-
bilities, the primary criteria for statistical decisions, to make choices. Likewise,
the determination of environmental standards for automobile emissions, the
forces that act on pipes used in drilling oil wells, and the testing of commer-
cial drugs all involve some degree of uncertainty. Uncertainty arises because
the level of emissions for an individual automobile, the forces exerted on a
pipe in one well, and individual patient reactions to a drug vary with each
observation, even if the observations are taken under “controlled” conditions.
These types of applications are only a few of many that could be mentioned.
Many others are discussed in subsequent chapters of this book.

Figure 1.1 symbolizes the fact that statistics should play a role in every
facet of data collection and analysis, from initial problem formulation to the
drawing of final conclusions. This figure distinguishes two types of studies:
experimental and observational. In experimental studies the variables of inter-
est often can be controlled and fixed at predetermined values for each test run
in the experiment. In observational studies many of the variables of interest
cannot be controlled, but they can be recorded and analyzed. In this book
we emphasize experimental studies, although many of the analytic procedures
discussed can be applied to observational studies.
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Figure 1.1 Critical stages of statistical input in scientific investigations.

Data are at the center of experimental and observational studies. As will
be stressed in Section 1.1, all data are subject to a variety of sources that
induce variation in measurements. This variation can occur because of fixed
differences among machines, random differences due to changes in ambient
conditions, measurement error in instrument readings, or effects due to many
other known or unknown influences.

Statistical experimental design will be shown to be effective in eliminating
known sources of bias, guarding against unknown sources of bias, ensur-
ing that the experiment provides precise information about the responses
of interest, and guaranteeing that excessive experimental resources are not
needlessly wasted through the use of an uneconomical design. Likewise,
whether one simply wishes to describe the results of an experiment or one
wishes to draw inferential conclusions about a process, statistical data-analysis
techniques aid in clearly and concisely summarizing salient features of exper-
imental data.

The next section of this chapter discusses the role of statistics in the
experimental process, and illustrates how a carefully designed experiment
and straightforward statistical graphics can clearly identify major sources
of variation in a chemical process. The last three sections of this chapter
introduce several concepts that are fundamental to an understanding of statis-
tical inference.

1.1 THE ROLE OF STATISTICS IN EXPERIMENTATION

Statistics is a scientific discipline devoted to the drawing of valid inferences
from experimental or observational data. The study of variation, including the
construction of experimental designs and the development of models which
describe variation, characterizes research activities in the field of statistics. A
basic principle that is the cornerstone of the material covered in this book is
the following:
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All measurements are subject to variation.

The use of the term measurement in this statement is not intended to exclude
qualitative responses of interest in an experiment, but the main focus of
this text is on designs and analyses that are appropriate for quantitative
measurements.

In most industrial processes there are numerous sources of possible varia-
tion. Frequently studies are conducted to investigate the causes of excessive
variation. These studies could focus on a single source or simultaneously
examine several sources. Consider, for example, a chemical analysis that
involves different specimens of raw materials and that is performed by several
operators. Variation could occur because the operators systematically differ in
their method of analysis. Variation also could occur because one or more of
the operators do not consistently adhere to the analytic procedures, thereby
introducing uncontrolled variability to the measurement process. In addition,
the specimens sent for analysis could differ on factors other than the ones
under examination.

To investigate sources of variability for a chemical analysis similar to the
one just described, an experiment was statistically designed and analyzed to
ensure that relevant sources of variation could be identified and measured.
A test specimen was treated in a combustion-type furnace, and a chemical
analysis was performed on it. In the experiment three operators each analyzed
two specimens, made three combustion runs on each specimen, and titrated
each run in duplicate. The results of the experiment are displayed in Table 1.1
and graphed in Figure 1.2.

Figure 1.2 is an example of a scatterplot, a two-dimensional graph of indi-
vidual data values for pairs of quantitative variables. In Figure 1.2, the abscissa
(horizontal axis) is simply the specimen/combustion run index and the ordinate
(vertical axis) is the chemical analysis result. Scatterplots can be made for any
pair of variables so long as both are quantitative. A scatterplot is constructed
by plotting the (x;, y;) pairs as indicated in Exhibit 1.2.

EXHIBIT 1.2 SCATTERPLOTS

1. Construct horizontal and vertical axes that cover the ranges of the two variables.
2. Plot (x;, y;) points for each observation in the data set.

Figure 1.2 highlights a major problem with the chemical analysis procedure.
There are definite differences in the analytic results of the three operators.
Operator 1 exhibits very consistent results for each of the two specimens and
each of the three combustion runs. Operator 2 produces analytic results that
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TABLE 1.1 Results of an Experiment to Identify Sources of
Variation in Chemical Analyses*

Chemical Analysis

Combustion

Operator Specimen Run 1 2
1 1 1 156 154
2 151 154
3 154 160
2 4 148 150
5 154 157
6 147 149
2 3 7 125 125
8 94 95
9 98 102
4 10 118 124
11 112 117
12 98 110
3 5 13 184 184
14 172 186
15 181 191
6 16 172 176
17 181 184
18 175 177

“Adapted from Snee, R. D. (1983). “Graphical Analysis of Process Variation
Studies,” Journal of Quality Technology, 15, 76—88. Copyright, American
Society for Quality Control, Inc., Milwaukee, WI. Reprinted by permission.
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Figure 1.2 Results of a study of variation in a chemical analysis. (Combustion runs are boxed;
duplicate analyses are connected by vertical lines.)
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are lower on the average than those of the other two operators. Operator 3
shows good consistency between the two specimens, but the repeat analyses of
two of the combustion runs on specimen 5 appear to have substantially larger
variation than for most of the other repeat analyses in the data set. Operator 2
likewise shows good average consistency for the two specimens, but large
variation both for the triplicate combustion runs for each specimen and for at
least one of the repeat analyses for the fourth specimen.

Thus, the experimental results indicate that the primary sources of varia-
tion in this chemical analysis are the systematic differences (biases) among
operators and, in some instances, the (random) inconsistency of the chemi-
cal analyses performed by a single operator. In reaching these conclusions
statistics played a role in both the design of the experiment and the formal
analysis of the results, the foregoing graphical display being one component
of the analysis. The quality of this data-collection effort enables straightfor-
ward, unambiguous conclusions to be drawn. Such clear-cut inferences are
often lacking when data are not collected according to a detailed statistical
experimental design.

This example illustrates three general features of the statistical design and
analysis of experiments. First, statistical considerations should be included
in the project design phase of any experiment. At this stage of a project
one should consider the nature of the data to be collected, including what
measurements are to be taken, what is known about the likely variation
to be encountered, and what factors might influence the variation in the
measurements.

Second, a statistical design should be selected that controls, insofar as pos-
sible, variation from known sources. The design should allow the estimation
of the magnitude of uncontrollable variation and the modeling of relation-
ships between the measurements of interest and factors (sources) believed to
influence these measurements.

Uncontrollable variation can arise from many sources. Two general sources
of importance to the statistical design of experiments are experimental error
and measurement error. Experimental error is introduced whenever test condi-
tions are changed. For example, machine settings are not always exact enough
to be fixed at precisely the same value or location when two different test runs
call for identical settings. Batches of supposedly identical chemical solutions
do not always have exactly the same chemical composition. Measurement
errors arise from the inability to obtain exactly the same measurement on two
successive test runs when all experimental conditions are unchanged.

Third, a statistical analysis of the experimental results should allow infer-
ences to be drawn on the relationships between the design factors and the
measurements. This analysis should be based on both the statistical design
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TABLE 1.2 Role of Statistics in Experimentation

Project Planning Phase

e What is to be measured?
e How large is the likely variation?
e What are the influential factors?

Experimental Design Phase

e Control known sources of variation
e Allow estimation of the size of the uncontrolled variation
e Permit an investigation of suitable models

Statistical Analysis Phase

e Make inferences on design factors
e Guide subsequent designs
e Suggest more appropriate models

and the model used to relate the measurements to the sources of variation. If
additional experimentation is necessary or desirable, the analysis should guide
the experimenter to an appropriate design and, if needed, a more appropriate
model of the measurement process.

Thus, the role of statistics in engineering and scientific experimentation
can be described using three basic categories: project planning, experimental
design, and data analysis. These three basic steps in the statistical design and
analysis of experimental results are depicted in Table 1.2.

1.2 POPULATIONS AND SAMPLES

Experimental data, in the form of a representative sample of observations,
enable us to draw inferences about a phenomenon, population, or process
of interest. These inferences are obtained by using sample statistics to
draw conclusions about postulated models of the underlying data-generating
mechanism.

All possible items or units that determine an outcome of a well-defined
experiment are collectively called a “population” (see Exhibit 1.3). An item or
a unit could be a measurement, or it could be material on which a measurement
is taken. For example, in a study of geopressure as an alternative source of
electric power, a population of interest might be all geographical locations
for which characteristics such as wellhead fluid temperature, pressure, or gas
content could be measured. Other examples of populations are:



10 STATISTICS IN ENGINEERING AND SCIENCE

e all 30-ohm resistors produced by a particular manufacturer under specified
manufacturing conditions during a fixed time period;

e all possible fuel-consumption values obtainable with a four-cylinder, 1.7-
liter engine using a 10%-methanol, 90%-gasoline fuel blend, tested under
controlled conditions on a dynamometer stand,

e all measurements on the fracture strength of one-inch-thick underwa-
ter welds on a steel alloy base plate that is located 200 feet deep in a
specified salt-water environment; or

e all 1000-1b containers of pelletized, low-density polyethylene produced
by a single manufacturing plant under normal operating conditions.

EXHIBIT 1.3

Population. A statistical population consists of all possible items or units possessing
one or more common characteristics under specified experimental or observa-
tional conditions.

These examples suggest that a population of observations may exist only
conceptually, as with the population of fracture-strength measurements. Pop-
ulations also may represent processes for which the items of interest are not
fixed or static; rather, new items are added as the process continues, as in the
manufacture of polyethylene.

Populations, as represented by a fixed collection of units or items, are not
always germane to an experimental setting. For example, there are no fixed
populations in many studies involving chemical mixtures or solutions. Like-
wise, ongoing production processes do not usually represent fixed populations.
The study of physical phenomena such as aging, the effects of drugs, or aircraft
engine noise cannot be put in the context of a fixed population of observations.
In situations such as these it is a physical process rather than a population that
is of interest (see Exhibit 1.4).

EXHIBIT 14

Process. A process is a repeatable series of actions that results in an observable
characteristic or measurement.

The concepts and analyses discussed in this book relative to samples from
populations generally are applicable to processes. For example, one samples
both populations and processes in order to draw inferences on models appro-
priate for each. While one models a fixed population in the former case, one
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models a “state of nature” in the latter. A simple random sample may be
used to provide observations from which to estimate the population model.
A suitably conducted experiment may be used to provide observations from
which to estimate the process model. In both situations it is the representative
collection of observations and the assumptions made about the data that are
important to the modeling procedures.

Because of the direct analogies between procedures for populations and for
processes, the focus of the discussions in this book could be on either. We
shall ordinarily develop concepts and experimental strategies with reference
to only one of the two, with the understanding that they should readily be
transferrable to the other. In the remainder of this section, we concentrate
attention on developing the relationships between samples and populations.

When defining a relevant population (or process) of interest, one must
define the exact experimental conditions under which the observations are
to be collected. Depending on the experimental conditions, many different
populations of observed values could be defined. Thus, while populations
may be real or conceptual, they must be explicitly defined with respect to all
known sources of variation in order to draw valid statistical inferences.

The items or units that make up a population are usually defined to be
the smallest subdivisions of the population for which measurements or obser-
vations can take on different values. For the populations defined above, for
example, the following definitions represent units of interest. An individual
resistor is the natural unit for studying the actual (as opposed to specified)
resistance of a brand of resistors. A measurement of fuel consumption from
a single test sequence of accelerations and decelerations is the unit for which
data are accumulated in a fuel economy study. Individual welds are the appro-
priate units for investigating fracture strength. A single container of pellets is
the unit of interest in the manufacture of polyethylene.

Measurements on a population of units can exhibit many different statistical
properties, depending on the characteristic of interest. Thus, it is important to
define the fundamental qualities or quantities of interest in an experiment. We
term these qualities or quantities variables (see Exhibit 1.5).

EXHIBIT 1.5

Variable. A property or characteristic on which information is obtained in an
experiment.

An observation, as indicated in Exhibit 1.6, refers to the collection of
information in an experiment, and an observed value refers to an actual mea-
surement or attribute that is the result of an individual observation. We often
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use “observation” in both senses; however, the context of its use should make
it clear which meaning is implied.

EXHIBIT 1.6

Observation. The collection of information in an experiment, or actual values ob-
tained on variables in an experiment.

A delineation of variables into two categories, response variables (see
Exhibit 1.7) and factors (see Exhibit 1.8), is an important consideration in the
modeling of data. In some instances response variables are defined according to
some probability model which is only a function of certain (usually unknown)
constants. In other instances the model contains one or more factors in addition
to (unknown) constants.

EXHIBIT 1.7

Response Variable. Any outcome or result of an experiment.

EXHIBIT 1.8

Factors. Controllable experimental variables that can influence the observed values
of response variables.

The response variable in a resistor study is the actual resistance measured
on an individual resistor. In a study of fuel economy one might choose to
model the amount of fuel consumed (response variable) as some function of
vehicle type, fuel, driver, ambient temperature, and humidity (factors). In the
underwater weld study the response variable is the fracture strength. In the
manufacture of polyethylene the response variable of interest might be the
actual weight of a container of pellets.

Most of the variables just mentioned are quantitative variables, because
each observed value can be expressed numerically. There also exist many
qualitative or nonnumerical variables that could be used as factors. Among
those variables listed above, ones that could be used as qualitative factors
include vehicle type, fuel, and driver.

Populations often are too large to be adequately studied in a specified time
period or within designated budgetary constraints. This is particularly true
when the populations are conceptual, as in most scientific and engineering
experiments, when they represent every possible observation that could be
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obtained from a manufacturing process under specified conditions, or when
the collection of data requires the destruction of the item. If it is not feasible
to collect information on every item in a population, inferences on the popu-
lation can be made by studying a representative subset of the data, a sample
(see Exhibit 1.9). Figure 1.3 illustrates one of the primary goals of scientific
experimentation and observation: induction from a sample to a population or
a process.

EXHIBIT 1.9

Sample. A sample is a group of observations taken from a population or a process.

There are many ways to collect samples in experimental work. A con-
venience sample is one that is chosen simply by taking observations that
are easily or inexpensively obtained. The key characteristic of a convenience
sample is that all other considerations are secondary to the economic or rapid
collection of data. For example, small-scale laboratory studies often are neces-
sary prior to the implementation of a manufacturing process. While this type
of pilot study is an important strategy in feasibility studies, the results are gen-
erally inadequate for inferring characteristics of the full-scale manufacturing
process. Sources of variation on the production line may be entirely different
from those in the tightly controlled environment of a laboratory.

Similarly, simply entering a warehouse and conveniently selecting a number
of units for inspection may result in a sample of units which exhibits less
variation than the population of units in the warehouse. From a statistical
viewpoint, convenience samples are of dubious value because the population
that they represent may have substantially different characteristics than the
population of interest.

Decision or
inference

Figure 1.3 Representative samples permit inductive inferences on populations.
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Another sampling technique that is frequently used in scientific studies is
termed judgmental sampling. Here one’s experience and professional judgment
are used to select representative observations from a population of interest.
In the context of a fuel-economy study, an example would be the selection
of a particular engine, one fuel blend, and specific laboratory conditions for
conducting the study. If the conditions selected for study are not truly rep-
resentative of typical engine, fuel, and operating conditions, it is difficult to
define the relevant population to which the observed fuel-consumption values
pertain. A current example of this problem is the E.P.A. fuel-economy ratings
posted on automobile stickers. These figures are comparable only under the
laboratory conditions under which the estimates are made, not on any typical
vehicle, fuel, or operating conditions.

Convenience and judgmental samples are important in exploratory research.
The difficulty with these types of samples is that important sources of vari-
ation may be held constant or varied over a narrower range than would be
the case for the natural occurrence of experimental units from the population
of interest. In addition, these sampling schemes may mask the true effects of
influential factors. This is an especially acute problem if two or more fac-
tors jointly influence a response. Holding one or more of these joint factors
constant through convenience or judgmental sampling could lead to erroneous
inferences about the effects of the factors on the response.

One of the most important sampling methodologies in experimental work
is the simple random sample, defined in Exhibit 1.10. In addition to its use in
the sampling of observations from a population, simple random sampling has
application in the conduct of scientific and engineering experiments. Among
the more prominent uses of simple random sampling in experimental work
are the selection of experimental units and the randomization of test runs.

EXHIBIT 1.10

Simple Random Sample. In an experimental setting, a simple random sample of
size n is obtained when items are selected from a fixed population or a process in
such a manner that every group of items of size n has an equal chance of being
selected as the sample.

If one wishes to sample 100 resistors from a warehouse, simple random
sampling requires that every possible combination of 100 resistors present in
the warehouse have an equal chance of being included in the selected sample.
Although the requirements of simple random sampling are more stringent than
most other sampling techniques, unintentional biases are avoided.

Simple random samples can be obtained in many ways. For example, in the
selection of experimental units to be included in an experiment, a common
approach is to enumerate or label each item from 1 to N and then use a
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table of random numbers to select n of the N units. If a test program is to
consist of n test runs, the test runs are sequentially numbered from 1 to n
and a random-number table is used to select the run order. Equivalently, one
can use random-number generators, which are available on computers. Use of
such tables or computer algorithms removes personal bias from the selection
of units or the test run order.

Simple random samples can be taken with or without replacement. Sampling
with replacement allows an experimental unit to be selected more than once.
One simply obtains n numbers from a random-number table without regard
to whether any of the selected numbers occur more than once in the sample.
Sampling without replacement prohibits any number from being selected more
than once. If a number is sampled more than once, it is discarded after the
first selection. In this way n unique numbers are selected. The sequencing of
test runs is always performed by sampling without replacement. Ordinarily
the selection of experimental units is also performed by sampling without
replacement.

Inspection sampling of items from lots in a warehouse is an example for
which a complete enumeration of experimental units is possible, at least for
those units that are present when the sample is collected. When a population
of items is conceptual or an operating production process is being studied,
this approach is not feasible. Moreover, while one could conceivably sample
at random from a warehouse full of units, the expense suffered through the
loss of integrity of bulk lots of product when a single item is selected for
inclusion in a sample necessitates alternative sampling schemes.

There are many other types of random sampling schemes besides simple
random sampling. Systematic random samples are obtained by sampling every
kth (e.g., every 5th, 10th, or 100th) unit in the population. Stratified random
samples are based on subdividing a heterogeneous population into groups,
or strata, of similar units and selecting simple random samples from each
of the strata. Cluster sampling is based on subdividing the population into
groups, or clusters, of units in such a way that it is convenient to randomly
sample the clusters and then either randomly sample or completely enumerate
all the observations in each of the sampled clusters. More details on these and
other alternatives to simple random sampling are given in the recommended
readings at the end of this chapter.

Regardless of which sampling technique is used, the key idea is that the
sample should be representative of the population under study. In experimental
settings for which the sampling of populations or processes is not germane,
the requirement that the data be representative of the phenomenon or the
“state of nature” being studied is still pertinent and necessary. Statistics, as a
science, seeks to make inferences about a population, process, or phenomenon
based on the information contained in a representative sample or collection of
observations.
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TABLE 1.3 Employee Identification Numbers

1 Al11401 41 B09087 81 G07704 121 B04256
2 P04181 42 B00073 82 K20760 122 KO05170
3 N00004 43 J08742 83 wo00124 123 RO7790
4 C03253 44 W13972 84 T00141 124 G15084
5 D07159 45 S00856 85 M25374 125 C16254
6 MO00079 46 A00166 86 K03911 126 R20675
7 S15552 47 S01187 87 wo1718 127 G06144
8 G01039 48 D00022 88 T04877 128 T12150
9 P00202 49 701194 89 M22262 129 R0O7904
10 R22110 50 M32893 90 C00011 130 M24214
11 D00652 51 KO00018 91 Ww23233 131 D00716
12 MO06815 52 H16034 92 K10061 132 M27410
13 C09071 53 F08794 93 K11411 133 J07272
14 S01014 54 S71024 94 B05848 134 L02455
15 D05484 55 G00301 95 L06270 135 D06610
16 DO00118 56 B00103 96 KO08063 136 M31452
17 M28883 57 B29884 97 P07211 137 L25264
18 G12276 58 G12566 98 F28794 138 M10405
19 MO06891 59 P03956 99 L00885 139 D00393
20 B26124 60 B00188 100 M26882 140 B52223
21 D17682 61 J21112 101 M49824 141 M16934
22 B42024 62 J08208 102 R0O5857 142 M27362
23 K06221 63 S11108 103 L30913 143 B38384
24 C35104 64 M65014 104 B46004 144 HO08825
25 MO00709 65 MO07436 105 R03090 145 S14573
26 P00407 66 H06098 106 H09185 146 B23651
27 P14580 67 S18751 107 J18200 147 S27272
28 P13804 68 Ww00004 108 W14854 148 G12636
29 P23144 69 M11028 109 S01078 149 R04191
30 DO00452 70 L00213 110 G09221 150 D13524
31 B06180 71 J06070 111 M17174 151 G00154
32 B69674 72 B14514 112 L04792 152 B19544
33 H11900 73 HO04177 113 523434 153 V01449
34 M78064 74 B26003 114 T02877 154 F09564
35 L04687 75 B26193 115 K06944 155 L09934
36 F06364 76 H28534 116 E14054 156 A10690
37 G24544 71 B04303 117 F00281 157 N02634
38 T20132 78 S07092 118 HO07233 158 W17430
39 DO05014 79 H11759 119 K06204 159 R02109

IS
(e

R00259 80 L00252 120 K06423 160 C18514
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To illustrate the procedures involved in randomly sampling a population,
consider the information contained in Table 1.3. The table enumerates a por-
tion of the world-wide sales force of a manufacturer of skin products. The
employees are identified in the table by the order of their listing (1-160) and
by their employee identification numbers. Such a tabulation might be obtained
from a computer printout of personnel records. For the purposes of the study
to be described, these 160 individuals form a population that satisfies several
criteria set forth in the experimental protocol.

Suppose the purpose of a study involving these employees is to investi-
gate the short-term effects of certain skin products on measurements of skin
elasticity. Initial skin measurements are available for the entire population of
employees (see Table 1.4). However, the experimental protocol requires that
skin measurements be made on a periodic basis, necessitating the transporta-
tion of each person in the study to a central measuring laboratory. Because
of the expense involved, the researchers would like to limit the participants
included in the study to a simple random sample of 25 of the employees
listed in Table 1.3.

Because the population of interest has been completely enumerated, one can
use a random-number table (e.g., Table Al of the Appendix) or a computer-
generated sequence of random numbers to select 25 numbers between 1 and
160. One such random number sequence is

57,71, 8, 83,92, 18, 63, 121, 19, 115, 139, 96, 133,
131,122, 17,79, 2, 68, 59, 157, 138, 26, 70, 9.

Corresponding to this sequence of random numbers is the sequence of emp-
loyee identification numbers that determines which 25 of the 160 employees
are to be included in the sample:

B29884, B04303, G01039, W00124, K10061, G12276, S11108,
B04256, M06891, K06944, D00393, K08063, J07272, D00716,
K05170, M28883, H11759, P04181, W00004, P03956, N02634,
M10405, P00407, 100213, P00202.

With periodic measurements taken on only this random sample of employ-
ees the researchers wish to draw conclusions about skin elasticity for the
population of employees listed in Table 1.3. This statement suggests that a
distinction must be made between measured characteristics taken on a pop-
ulation and those taken on a sample. This distinction is made explicit in the
next section.
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TABLE 1.4 Skin Elasticity Measurements

1 31.9 41 36.0 81 36.3 121 33.0
2 33.1 42 28.6 82 36.3 122 374
3 33.1 43 38.0 83 41.5 123 33.8
4 38.5 44 39.1 84 33.0 124 353
5 39.9 45 394 85 36.3 125 37.5
6 36.5 46 30.6 86 36.3 126 31.6
7 34.8 47 34.1 87 30.9 127 33.1
8 38.9 48 40.8 88 323 128 38.2
9 40.3 49 35.1 89 39.2 129 314
10 33.6 50 34.1 90 35.2 130 35.9
11 36.4 51 36.3 91 35.1 131 37.6
12 34.4 52 35.1 92 33.9 132 355
13 35.7 53 35.0 93 42.0 133 34.2
14 33.9 54 39.0 94 35.1 134 34.0
15 36.6 55 34.0 95 34.5 135 313
16 36.0 56 353 96 35.0 136 32.6
17 30.8 57 36.0 97 35.1 137 34.9
18 31.1 58 34.7 98 35.7 138 353
19 37.6 59 39.8 99 36.4 139 35.1

20 35.7 60 35.8 100 39.6 140 35.7
21 29.6 61 35.7 101 35.2 141 323
22 373 62 39.8 102 37.2 142 38.1
23 31.4 63 36.4 103 333 143 36.8
24 31.6 64 36.1 104 33.7 144 38.7
25 34.6 65 37.7 105 37.8 145 40.0
26 34.6 66 323 106 34.4 146 35.4
27 33.7 67 35.6 107 36.9 147 34.0
28 30.9 68 38.2 108 31.8 148 343
29 34.6 69 39.0 109 353 149 32.8
30 37.0 70 343 110 38.1 150 30.7
31 353 71 40.6 111 34.1 151 34.4
32 36.3 72 374 112 35.8 152 343
33 31.8 73 373 113 333 153 35.8
34 38.2 74 36.9 114 33.8 154 37.5
35 34.6 75 29.0 115 36.4 155 344
36 36.0 76 39.0 116 36.9 156 35.8
37 40.8 77 33.7 117 353 157 31.9
38 39.2 78 32.9 118 37.0 158 36.9
39 334 79 33.8 119 335 159 344
40 34.0 80 36.2 120 40.3 160 30.1
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1.3 PARAMETERS AND STATISTICS

Summarization of data can occur in both populations and samples. Parameters,
as defined in Exhibit 1.11, are constant population values that summarize
the entire collection of observations. Parameters can also be viewed in the
context of a stable process or a controlled experiment. In all such settings a
parameter is a fixed quantity that represents a characteristic of interest. Some
examples are:

e the mean fill level for twelve-ounce cans of a soft drink bottled at
one plant,

e the minimum compressive strength of eight-foot-long, residential-grade,
oak ceiling supports, and

e the maximum wear on one-half-inch stainless-steel ball bearings sub-
jected to a prescribed wear-testing technique.

EXHIBIT 1.11

Parameters and Statistics. A parameter is a numerical characteristic of a population
or a process. A statistic is a numerical characteristic that is computed from a
sample of observations.

Parameters often are denoted by Greek letters, such as p for the mean and
o for the standard deviation (a measure of the variability of the observations
in a population), to reinforce the notion that they are (generally unknown)
constants. Often population parameters are used to define specification limits
or tolerances for a manufactured product. Alternatively they may be used to
denote hypothetical values for characteristics of measurements that are to be
subjected to scientific or engineering investigations.

In many scientific and engineering contexts the term parameter is used as
a synonym for variable (as defined in the previous section). The term param-
eter should be reserved for a constant or fixed numerical characteristic of a
population and not used for a measured or observed property of interest in an
experiment. To emphasize this distinction we will henceforth use Greek let-
ters to represent population parameters and Latin letters to denote variables.
Sample statistics, in particular estimates of population parameters, also will
generally be denoted by Latin letters.

The term distribution (see Exhibit 1.12) is used throughout this text to
refer to the possible values of a variable along with some measure of how
frequently they occur. In a sample or a population the frequency could be
measured by counts or percentages. Often when dealing with populations or
processes the frequency is measured in terms of a probability model specifying
the likelihood of occurrence of the values.
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Figure 1.4 Normal distribution of measurement values.

The curve in Figure 1.4 often is used as a probability model, the nor-
mal distribution, to characterize populations and processes for many types
of measurements. The density or height of the curve above the axis of mea-
surement values, represents the likelihood of obtaining a value. Probabilities
for any range of measurement values can be calculated from the probability
model once the model parameters are specified. For this distribution, only
the mean and the standard deviation are needed to completely specify the
probability model.

EXHIBIT 1.12

Distribution. A tabular, graphical, or theoretical description of the values of a vari-
able using some measure of how frequently they occur in a population, a process,
or a sample.

The peak of the curve in Figure 1.4 is located above the measurement
value 50, which is the mean u of the distribution of data values. Because the
probability density is highest around the mean, measurement values around
the mean are more likely than measurement values greatly distant from it.
The standard deviation o of the distribution in Figure 1.4 is 3. For normal
distributions (Section 2.3), approximately 68% of the measurement values lie
between u + o (47 to 53), approximately 95% between u + 20 (44 to 56),
and approximately 99% between u =+ 30 (41 to 59). The mean and the stan-
dard deviation are very important parameters for the distribution of measure-
ment values for normal distributions such as that of Figure 1.4.

Statistics are sample values that generally are used to estimate population
parameters. For example, the average of a sample of observations can be used
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to estimate the mean of the population from which the sample was drawn.
Similarly, the standard deviation of the sample can be used to estimate the
population standard deviation. As we shall see in subsequent chapters, there
are often several sample statistics that can be used to estimate a population
parameter.

While parameters are fixed constants representing an entire population
of data values, statistics are “random” variables and their numerical values
depend on which particular observations from the population are included
in the sample. One interesting feature about a statistic is that it has its own
probability, or sampling, distribution: the sample statistic can take on a num-
ber of values according to a probability model, which is determined by the
probability model for the original population and by the sampling procedure
(see Exhibit 1.13). Hence, a statistic has its own probability model as well
as its own parameter values, which may be quite different from those of the
original population.

EXHIBIT 1.13

Sampling Distribution. A sampling distribution is a theoretical model that describes
the probability of obtaining the possible values of a sample statistic.

Histograms are among the most common displays for illustrating the distri-
bution of a set of data. They are especially useful when large numbers of data
must be processed. Histograms (see Exhibit 1.14) are constructed by dividing
the range of the data into several intervals (usually of equal length), counting
the number of observations in each interval, and constructing a bar chart of
the counts. A by-product of the construction of the histogram is the frequency
distribution, which is a table of the counts or frequencies for each interval.

EXHIBIT 1.14 FREQUENCY DISTRIBUTIONS AND HISTOGRAMS

1. Construct intervals, ordinarily equally spaced, which cover the range of the
data values.

2. Count the number of observations in each of the intervals. If desirable, form
proportions or percentages of counts in each interval.

3. Clearly label all columns in tables and both axes on histograms, including any
units of measurement, and indicate the sample or population size.

4. For histograms, plot bars whose
(a) widths correspond to the measurement intervals, and

(b) heights are (proportional to) the counts for each interval (e.g., heights can
be counts, proportions, or percentages).
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Both histograms and the tables of counts that accompany them are some-
times referred to as frequency distributions, because they show how often the
data occur in various intervals of the measured variable. The intervals for
which counts are made are generally chosen to be equal in width, so that the
size (area) of the bar or count is proportional to the number of observations
contained in the interval. Selection of the interval width is usually made by
simply dividing the range of the data by the number of intervals desired in the
histogram or table. Depending on the number of observations, between 8 and
20 intervals are generally selected —the greater the number of observations,
the greater the number of intervals.

When the sample size is large, it can be advantageous to construct relative-
frequency histograms. In these histograms and frequency distributions either
the proportions (counts/sample size) or the percentages (proportions x 100%)
of observations in each interval are calculated and graphed, rather than the
frequencies themselves. Use of relative frequencies (or percentages) in his-
tograms ensures that the total area under the bars is equal to one (or 100%).
This facilitates the comparison of the resultant distribution with that of a the-
oretical probability distribution, where the total area of the distribution also
equals one

A frequency distribution and histogram for the skin elasticity measure-
ments in Table 1.4 are shown in Table 1.5 and Figure 1.5. The histogram in
Figure 1.5 is an example of a relative-frequency histogram. The heights of the
bars suggest a shape similar to the form of the normal curve in Figure 1.4.
On the basis of these data one might postulate a normal probability model for
the skin measurements.

Figure 1.6 shows a normal probability model that has the same mean
(u = 35.4) and standard deviation (o = 2.65) as the population of values

0.20

0.16 11—

0.12
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28 30 32 34 36 38 40 42
Elasticity measurement

Figure 1.5 Distribution of elasticity measurements (n = 160).
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TABLE 1.5 Frequency Distribution for Skin Elasticity

Data Set
Skin Interval
Elasticity* Midpoint Frequency Proportion
28.5-29.5 29 2 0.01
29.5-30.5 30 2 0.01
30.5-31.5 31 9 0.06
31.5-325 32 9 0.06
32.5-33.5 33 11 0.07
33.5-34.5 34 26 0.16
34.5-35.5 35 25 0.16
35.5-36.5 36 28 0.18
36.5-37.5 37 14 0.09
37.5-38.5 38 12 0.08
38.5-39.5 39 10 0.06
39.5-40.5 40 7 0.04
40.5-41.5 41 3 0.02
41.5-42.5 42 2 0.01
160 1.00

*Intervals include lower limits, exclude upper ones.
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Figure 1.6 Normal approximation to elasticity distribution.

in Table 1.4. Observe that the curve for the theoretical normal model pro-
vides a good approximation to the actual distribution of the population of
measurements, represented by the vertical bars.

One of the features of a normal model is that averages from simple ran-
dom samples of size n also follow a normal probability model with the same
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Figure 1.7 Comparison of theoretical normal distributions.

population mean but with a standard deviation that is reduced by a factor of
/n from that of the original population. Thus, averages of random samples
of size 4 have standard deviations that are half that of the original popula-
tion. Figure 1.7 shows the relationship between a normal probability model
for individual measurements that have a population mean of u = 35.4 and
a standard deviation of ¢ = 2.5 and one for the corresponding population
of sample averages of size 4. Note that the latter distribution has u = 35.4
but o = 2.5/+/4 = 1.25. The distribution of the averages is more concentrated
around the population mean than is the distribution of individual observations.
This indicates that it is much more likely to obtain a sample average that is
in a fixed interval around the population mean than it is to obtain a single
observation in the same fixed interval.

This discussion is intended to highlight the informational content of pop-
ulation parameters and to shed some light on the model-building processes
involved in drawing inferences from sample statistics. The final section in this
chapter focuses on one additional issue, which helps to distinguish statistical
from mathematical problem solving.

1.4 MATHEMATICAL AND STATISTICAL MODELING

Models and model building are commonplace in the engineering and physical
sciences. A research engineer or scientist generally has some basic knowl-
edge about the phenomenon under study and seeks to use this information
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to obtain a plausible model of the data-generating process. Experiments are
conducted to characterize, confirm, or reject models —in particular, through
hypotheses about those models. Models take many shapes and forms, but in
general they all seek to characterize one or more response variables, perhaps
through relationships with one or more factors.

Mathematical models, as defined in Exhibit 1.15, have the common trait
that the response and predictor variables are assumed to be free of spec-
ification error and measurement uncertainty. Mathematical models may be
poor descriptors of the physical systems they represent because of this lack
of accounting for the various types of errors included in statistical models.
Statistical models, as defined in Exhibit 1.16, are approximations to actual
physical systems and are subject to specification and measurement errors.

EXHIBIT 1.15

Mathematical Model. A model is termed mathematical if it is derived from the-
oretical or mechanistic considerations that represent exact, error-free assumed
relationships among the variables.

EXHIBIT 1.16

Statistical Model. A model is termed statistical if it is derived from data that are
subject to various types of specification, observation, experimental, and/or mea-
surement errors.

An example of a mathematical model is the well-known fracture mechan-
ics relation:

Kic=ySa'?, (1.1)

where K¢ is the critical stress intensity factor, S is the fracture strength, a
is the size of the flaw that caused the fracture, and y is a constant relating
to the flaw geometry. This formula can be utilized to relate the flaw size
of a brittle material to its fracture strength. Its validity is well accepted by
mechanical engineers because it is based on the theoretical foundations of
fracture mechanics, which have been confirmed through extensive experimen-
tal testing.

Empirical studies generally do not operate under the idealized conditions
necessary for a model like equation (1.1) to be valid. In fact, it often is not pos-
sible to postulate a mathematical model for the mechanism being studied. Even
when it is known that a model like equation (1.1) should be valid, experimental
error may become a nontrivial problem. In these situations statistical models
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are important because they can be used to approximate the response variable
over some appropriate range of the other model variables. For example, addi-
tive or multiplicative errors can be included in the fracture-mechanics model,
yielding the statistical models

Kic=ySa'?+e or K;c=ySa'l?e (1.2)

where e is the error. Note that the use of “error” in statistical models is not
intended to indicate that the model is incorrect, only that unknown sources of
uncontrolled variation, often measurement error, are present.

A mathematical model, in practice, can seldom be proved with data. At
best, it can be concluded that the experimental data are consistent with a par-
ticular hypothesized model. The chosen model might be completely wrong
and yet this fact might go unrecognized because of the nature of the experi-
ment; e.g., data collected over a very narrow range of the variables would be
consistent with any of a vast number of models. Hence, it is important that
proposed mathematical models be sufficiently “strained” by the experimental
design so that any substantial discrepancies from the postulated model can
be identified.

In many research studies there are mathematical models to guide the inves-
tigation. These investigations usually produce statistical models that may be
partially based on theoretical considerations but must be validated across wide
ranges of the experimental variables. Experimenters must then seek “lawlike
relationships™ that hold under a variety of conditions rather than try to build
separate statistical models for each new data base. In this type of model gen-
eralization, one may eventually evolve a “theoretical” model that adequately
describes the phenomenon under study.
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EXERCISES

1 The Department of Transportation (DOT) was interested in evaluating the
safety performance of motorcycle helmets manufactured in the United
States. A total of 264 helmets were obtained from the major U.S. manufac-
turers and supplied to an independent research testing firm where impact
penetration and chin retention tests were performed on the helmets in
accordance with DOT standards.

(a) What is the population of interest?

(b) What is the sample?

(c¢) Is the population finite or infinite?

(d) What inferences can be made about the population based on the
tested samples?

2 List and contrast the characteristics of population parameters and sam-
ple statistics.

3 A manufacturer of rubber wishes to evaluate certain characteristics of its
product. A sample is made from a warehouse containing bales of synthetic
rubber. List some of the possible candidate populations from which this
sample can be taken.

4 It is known that the bales of synthetic rubber described in Exercise 3 are
stored on pallets with a total of 15 bales per pallet. What type of sampling
methodology is being implemented under the following sample scenarios?
(a) Five pallets of bales are randomly chosen; then eight bales of rubber

are randomly selected from each pallet.
(b) Forty bales are randomly selected from the 4500 bales in the ware-
house.

(c) All bales are sampled on every fifth pallet in the warehouse.
(d) All bales that face the warehouse aisles and can be reached by a forklift
truck are selected.
5 Recall the normal distribution discussed in Section 1.3. What is the impor-
tance of u £ 30?
6 The population mean and standard deviation of typical cetane numbers
measured on fuels used in compression—ignition engines is known to be
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n =30 and o = 5. Fifteen random samples of these fuels were taken from
the relevant fuel population, and the sample means and standard deviations
were calculated. This random sampling procedure was repeated (replicated)

nine times.

Replicate Sample Sample

No. n Mean Standard Deviation
1 15 32.61 4.64
2 15 28.57 6.49
3 15 29.66 4.68
4 15 30.09 5.35
5 15 30.11 6.39
6 15 28.02 4.05
7 15 30.09 5.35
8 15 29.08 3.56
9 15 2891 4.88

Consider the population of all sample means of size n = 15. What pro-
portion of means from this population should be expected to be between
the 30 £ 5 limits? How does this sample of nine averages compare with
what should be expected?

7 A research program was directed toward the design and development of
self-restoring traffic-barrier systems capable of containing and redirect-
ing large buses and trucks. Twenty-five tests were conducted in which
vehicles were driven into the self-restoring traffic barriers. The range of
vehicles used in the study included a 1800-Ib car to a 40,000-1b intercity
bus. Varying impact angles and vehicle speeds were used, and the car
damage, barrier damage, and barrier containment were observed.

(a) What is an observation in this study?
(b) Which variables are responses?
(¢) Which variables are factors?

8 Space vehicles contain fuel tanks that are subject to liquid sloshing in low-
gravity conditions. A theoretical basis for a model of low-gravity sloshing
was derived and used to predict the slosh dynamics in a cylindrical tank.
Low-gravity simulations were performed in which the experimental results
were used to verify a statistical relationship. It was shown in this study
that the statistical model closely resembled the theoretical model. What
type of errors are associated with the statistical model? Why aren’t the
statistical and theoretical models exactly the same?

9 Use a table of random numbers or a computer-generated random number
sequence to draw 20 simple random samples, each of size n = 10, from
the population of employees listed in Table 1.3. Calculate the average of
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the skin elasticity measurements (Table 1.4) for each sample. Graph the
distribution of these 20 averages in a form similar to Figure 1.5. Would
this graph be sufficient for you to conclude that the sampling distribution
of the population of averages is a normal distribution? Why (not)?

Use the table of random numbers in the Appendix to choose starting points
between 1 and 16 for ten systematic random samples of the population
of employees listed in Table 1.3. Select every 10th employee. Calculate
the average of the skin elasticity measurements for each sample. Does a
graph of the distribution of these averages have a similar shape to that of
Exercise 9?

Simple random samples and systematic random samples often result in
samples that have very similar characteristics. Give three examples of
populations that you would expect to result in similar simple and system-
atic random samples. Explain why you expect the samples to be similar.
Give three examples for which you expect the samples to be different.
Explain why you expect them to be different.

A series of valve closure tests were conducted on a 5-inch-diameter speed-
control valve. The valve has a spring-loaded poppet mechanism that allows
the valve to remain open until the flow drag on the poppet is great enough
to overcome the spring force. The poppet then closes, causing flow through
the valve to be greatly reduced. Ten tests were run at different spring
locking-nut settings, where the flow rate at which the valve poppet closed
was measured in gallons per minute. Produce a scatterplot of these data.
What appears to be the effect of nut setting on flow rate?

Nut Setting Flow Rate Nut Setting Flow Rate
0 1250 10 2085
2 1510 12 1503
4 1608 14 2115
6 1650 16 2350
8 1825 18 2411

A new manufacturing process is being implemented in a factory that pro-
duces automobile spark plugs. A random sample of 50 spark plugs is
selected each day over a 15-day period. The spark plugs are examined and
the number of defective plugs is recorded each day. Plot the following data
in a scatterplot with the day number on the horizontal axis. A scatterplot
with time on the horizontal axis is often called a sequence plot. What does
the plot suggest about the new manufacturing process?
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14 Construct two histograms from the solar-energy data in Exercise 3 of
Chapter 2. Use the following interval widths and starting lower limits
for the first class. What do you conclude about the choices of the interval
width for this data set?

Histogram 1 Histogram 2

Interval width 8 2
Starting lower limit 480 480

15 The following data were taken from a study of red-blood-cell counts before
and after major surgery. Counts were taken on 23 patients, all of whom

were of the same sex (female) and who had the same blood type (O+).

Count Count

Patient  Pre-op  Post-op  Patient  Pre-op Post-op

1 14 0 13 5 6
2 13 26 14 4 0
3 4 2 15 15 3
4 5 4 16 4 2
5 18 8 17 0 3
6 3 1 18 7 0
7 6 0 19 2 0
8 11 3 20 8 13
9 33 23 21 4 24
10 11 2 22 4 6
11 3 2 23 5 0
12 3 2
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(a) Construct histograms of the pre-op and the post-op blood counts. What
distinguishing features, if any, are there in the distributions of the
blood counts?

(b) Make a scatter diagram of the two sets of counts. Is there an apparent
relationship between the two sets of counts?

16 Satellite sensors can be used to provide estimates of the amounts of certain

crops that are grown in agricultural regions of the United States. The
following data consist of two sets of estimates of the proportions of each
of 33 5 x 6-nautical-mile segments of land that are growing corn during
one time period during the crop season (the rest of the segment may
be growing other crops or consist of roads, lakes, houses, etc.). Use the
graphical techniques discussed in this chapter to assess whether these two
estimation methods are providing similar information on the proportions
of these segments that are growing corn.

Proportion Proportion
Growing Corn Growing Corn
Segment Method 1 Method 2 Segment Method 1 Method 2

1 0.49 0.24 18 0.61 0.33
2 0.63 0.32 19 0.50 0.20
3 0.60 0.51 20 0.62 0.65
4 0.63 0.36 21 0.55 0.51
5 0.45 0.23 22 0.27 0.31
6 0.64 0.26 23 0.65 0.36
7 0.67 0.36 24 0.70 0.33
8 0.66 0.95 25 0.52 0.27
9 0.62 0.56 26 0.60 0.30
10 0.59 0.37 27 0.62 0.38
11 0.60 0.62 28 0.26 0.22
12 0.50 0.31 29 0.46 0.72
13 0.60 0.56 30 0.68 0.76
14 0.90 0.90 31 0.42 0.36
15 0.61 0.32 32 0.68 0.34
16 0.32 0.33 33 0.61 0.28
17 0.63 0.27



