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ABSTRACT

Regression of observations from the real system on model predictions is
sometimes used for empirical validation. The arguments against this pro-
cedure are: (1) that it is a misapplication of regression; (2) that null
hypothesis tests are ambiguous; (3) that regression lacks sensitivity in this
context because distinguishing the points from a random cloud is rarely
necessary at this stage of model development; (4) that the fitted line is
irrelevant to model performance; and (5) that the assumptions for regres-
sion can be difficult to satisfy. An alternative method is given which con-
centrates on the deviations (prediction minus observation) and where the
modeller has to define criteria for an adequate model with reference to its
purpose. This method can be rigorous, objective and quantitative, and is
also easy for non-maodellers to understand. € 1997 Published by Elsevier
Science Ltd. All rights reserved

INTRODUCTION

Modellers generally accept that the modelling process includes a stage of
validation, pace Oreskes et al. (1994) who discuss the confusion in terminol-
ogy and philosophical difficulties. Validation is taken here to mean checking
that the model structure or its outputs are sufficiently close to the workings
or observed states of the real system. The relative emphasis on model struc-
ture or outputs depends on whether the model is primarily to explore the
workings of the system and increase understanding, or to make predictions
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that will replace observations of the system. Beck (1987) and McCarl (1934)
provide reviews of validation, concentrating on the overall rationale and on
validation of model structure. The comparison of predictions from the model
with observations from the real world, together with an assessment of model
performance, is empirical validation. It is only a part of the whole process of
validation but an important part for models that are to be applied: where the
predictions are used instead of actual measurements on the real system which
may be too costly or difficult to make.

Many books on modelling give little guidance on empirical validation
(e.g. Burghes & Wood, 1980; Jeffers, 1982; Charles-Edwards et al., 1986;
Thornley & Johnson, 1990; Trenberth, 1992). It is, therefore, not surprising
that modellers resort to the simplest procedure that comes to hand and seems
to be suitable. I suggest that this is the reason why empirical validation is
so often presented as a scatter graph of prediction and observation
(e.g. Carberry & Abrecht, 1991; Clewett et al., 1991; Uehara & Tsuji, 1991;
Aber & Federer, 1992; Warnant et al., 1994), sometimes with regression
which is intended to be an objective and quantitative measure of how good
the model is (e.g. Nemani & Running, 1989; Hammer & Muchow, 1991;
Keatinget al., 1991; Parton et al., 1993; Paruelo & Sala, 1995; Woodward et al.,
1995). Regression has been promoted for validation by Reckhow er al. (1990);
Flavelle (1992) and Mayer et al. (1994) but deprecated by Harrison (1990).

The aim of this paper is to explain why regression is not appropriate for
empirical validation and to outline an alternative method. Empirical valida-
tion must demonstrate to users of models that the model is adequate for its
purpose. For this reason it should be objective and readily understandable
without a deep knowledge of modelling or of mathematics in general. Hence,
in this paper I concentrate on verbal arguments although some knowledge of
elementary statistics is required.

A statistical test or a method of empirical validation can claim to be
objective if all individuals using the same procedure would reach the same
conclusions from a given set of data. The conclusions would not depend on
the knowledge or bias of the individual but on things external to the indivi-
dual. For a statistical test, the ‘same procedure’ means that it is agreed which
test statistic to calculate and by which formula, and what the critical values
are for given thresholds of significance. There is implicit agreement on the
theory underlying the test (probability, distribution functions) and there has
to be explicit agreement that the assumptions for the test are satisfied by the
data. It is in this area that individual experience and preferences can produce
different results because one person may accept, for example, more hetero-
geneity of variance than another who would consider a transformation
necessary. There are guidelines for this, but few rigid rules (Finney, 1973;
Sokal & Rohlf, 1981; Gilbert, 1989) so that each case must be supported by
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argument as far as possible. Similarly for a method of empirical validation:
agreement is needed on the criteria to be used. These must be stated explicitly
and justified with reference to the purpose of the model. Opinions may differ
on the weight to be attached to supporting arguments, but there is much
less room left for personal bias, especially concealed bias, which is where
subjectivity lies.

HOW REGRESSION APPEARS TO BE SUITABLE

The data for empirical validation frequently consist of pairs of predictions
and observations. If the observations are collected first then the model can be
run for the appropriate conditions to obtain the comparable predictions. In
other cases the model predictions may be generated first and observations
collected from the real system for conditions identical as far as possible to the
model runs. The observations should be a set gathered specially for validation
or a set kept separate from data used in model construction or calibration
(estimation of values for parameters) if validation is to be an independent
evaluation of the model.

Predictions and observations are plotted on a scatter graph. For the
arguments set out below it makes little difference whether predictions or
observations are the independent variable on the x-axis. If there was
perfect agreement the points would fall on a line of perfect correspondence,
1:1, passing through the origin. This is never so in practice but a regression
line can be computed from the points and its statistical significance
calculated. The value of #2, the coefficient of determination, can be examined:
this lies between 0 and 1 and indicates the fraction of variation explained by
the regression. Statistical tests can be carried out for whether the slope of the
line differs significantly from 1-0 and the intercept from zero. This line of
thought is the “intuitive appeal’ of regression (Harrison, 1990) and the steps
given above are the way a biologist tends to apply the statistics learnt
for analysing experimental results. Harrison (1990) and Mayer et al.
(1994) employ a more sophisticated regression analysis, using an F-test
for the simultaneous null hypotheses that the slope is 1-0 and the intercept
zero.

An example is shown in Fig. 1 and the regression statistics are given in
Table 1. The model is for the growth of a grass sward (A.C. Terry, personal
communication) developed from the models of Sheehy et al. (1979, 1980). It
is driven by daily weather data and predicts shoot dry weight. The observa-
tions are from six harvests during the growing season of shoot dry weight at
five sites. The model was run with weather records from the sites with simu-
lated harvests on the appropriate dates.
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Fig. 1. Observed shoot dry weight from harvested plots of grass sward compared with pre-

dictions from a model of grass growth driven by the weather records for the harvest locations.

The line is the regression of observations on predictions (details in Table 1)}. In this case the
regression line is very close to the 1:1 line which has been omitted for clarity.

TABLE 1
Regression Statistics for the Attempted Empirical Validation Shown in Fig. 1

Regression equation: observation = —1-8430 + 1.0028 x prediction.
n=30; 28 degrees of freedom.

r>=0-85259.

Table of analysis of variance.

Degrees of Sum of squares Mean square  Calculated value of F
freedom
Source
Regression 1 98 687 98 687 161.95 *** (P <(.001)
Residual 28 17 063 609
Total 29 115 750

For the tests below the critical value of 1 is 2-048 for P=0-05, 28 degrees of freedom.
Variance of slope =0-0062 101.

Test on difference of slope from 1-0: t=0-036. not significant (P> 0-05), 28 degrees of free-
dom.

95% confidence limits of slope 0-84 to 1-16.

Variance of intercept = 101-92.

Test on difference of intercept from zero: 1=0-183, not significant (P> 0-05), 28 degrees of
freedom.

95% confidence limits of intercept —22.51 to 18-83.
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WHY REGRESSION IS INAPPROPRIATE

There are five objections to the use of regression. The first two are funda-
mental; the other three cause difficulties in practice.

1. Misapplication of regression. The most common purpose of regression
is to estimate y from x when certain assumptions are satisfied (Draper &
Smith, 1981; Gilbert, 1989; Webster, 1989); a less frequent application is
the estimation of the best value for the slope between two variables
(functional relationship) where an ordinary least squares regression is
appropriate in certain cases (Sokal & Rohlf, 1981). In the case of
empirical validation there is no interest in estimating a predicted value
given an observation, or vice versa, so regression is not being used for
its main purpose. The fraction of vanation in the y values explained by
the regression (r?) is of no relevance to validation since it is not intended
to make predictions from the fitted line.

2. Ambiguity of null hypothesis tests. The test of whether the slope of the
fitted line differs significantly from 1-0 can be carried out as an F-test or a
t-test. In formal terms the null hypothesis is set up that the slope equals
1-0 and the test attempts to falsify this; if falsification fails then the slope
is said not to differ significantly from 1-0. Unfortunately this kind of test
cannot be successful unambiguously (Sokal & Rohlf, 1981, p.173; Har-
rison, 1990; Reckhow er al., 1990) because the more scatter in the
points, the greater the standard error of the slope and the smaller the
computed value of the test statistic so that it is harder to reject the null
hypothesis. This leads to the paradoxical result that regressions from
highly scattered samples of points are more likely to have slopes not
significantly different from 1-0! The test is ambiguous because falsification
of the null hypothesis can fail either because the slope is really not different
from 1.0 or because there is much scatter around the line. An alternative
procedure, equivalent to the tests but understandable without the for-
mal logic of statistics, is to examine the confidence limits for the slope at
95% (equivalent to P=0-05) or any other value, using the appropriate
value of t from tables. In Table 1 the 95% confidence limits for the slope
are 0-84-1-16. The regression is very highly significant, the variance of
the slope is small, and the value of 7 is close to its lowest possible of
1.96; visually the scatter around the line is not excessive (Fig. 1) but still
the slope of the line in 95% of similar samples would lie in this sizeable
range around 1-0. If the scatter was worse the range would be even
larger. Exactly the same arguments apply to the test that the intercept
does not differ from zero; Table 1 shows how large the 95% confidence
limits of the intercept can be for a very highly significant regression.
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3. Lack of sensitivity. The statistical significance of a regression is given by

the F-test from analysis of variance (testing the null hypothesis that the
slope is zero). A significant regression means that the points are not
randomly scattered or following a curve. For a model that has reached
the stage of serious empirical validation there is certain to be a good
general correspondence of prediction and observation so that finding a
significant regression is inevitable and therefore trivial. Experience
shows that any cloud of points with a tendency to avoid two opposite
corners will have a significant regression line, as the example in the
Appendix demonstrates. Regression is not sensitive enough to quantify
how good the line is, once past the conventional thresholds of 2=10-05,
0-01 or 0-001 which are easily attained. This has been recognized by
those using regression for its intended purpose. Wetz’s criterion for a
regression to be of practical use in predicting y from x (Draper & Smith,
1981, p.93) is that the calculated value of F in the analysis of variance
should be much larger than the critical value for significance at P=0-05.
The multiplier varies slightly with the number of degrees of freedom for
the regression and the residual, but in general it is is 4, or 6 for a stiffer
test of usefulness.

. The fitted line is irrelevant to validation. The use of regression

concentrates attention on the fitted line which is merely the best
summary of a straight line relationship among the sample of points
provided by pairs of predictions and observations. The fitted line is
not part of the model nor is it model output and cannot be of direct
relevence to model performance. The deviations, in contrast, calculated
as prediction minus observation, give direct information on how far
the model fails to simulate the system exactly. The dewviations are
the subject of the alternative method of empirical validation given
below.

. Violation of assumptions. The data used for empirical validation rarely

satisfy the assumptions of linear regression. The first assumption is that
the x values are known without error. This can be true if the model is
deterministic and the predictions are used as x (Mayer et al., 1994), as in
the example in Fig. 1. The other assumptions concern the y values: they
should be a random sample, independent of one another, with homo-
geneous variance along the x-axis and with residuals Normally dis-
tributed (Draper & Smith, 1981; Sokal & Rohlf, 1981). The assumption
of independence is suspect if the observations are values from a series in
time or space or are accumulated values or are autocorrelated in any
other way. If the observations cover a large range then homogeneity of
variance needs critical examination because larger values often have
larger variability.
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AN ALTERNATIVE METHOD FOR EMPIRICAL VALIDATION

This will be published in more detail elsewhere (Mitchell & Sheehy, 1997) so
only a short account is given here using the data in Fig. 1. The essence of this
method is that the deviations contain the important information in this set of
data; that models cannot be perfect and need only be adequate so some
limitation of precision has to be accepted; and that the size of the acceptable
precision can be defined with reference to the purpose of the model. In this
way some of the philosophical problems raised about validation can be
avoided, especially that a model cannot be proved to be correct or true
(Thornley & Johnson, 1990; Oreskes et al., 1994). The method may appear
harsh because it can so clearly expose a model as not adequate for its
purpose, but this accords with the observation of Amthor & Loomis
(1996) that most crop models ‘fail most tests with independent data’, i.e.
have not been validated empirically. With such a result the model is being
assessed realistically: it is not a complete failure, but needs to be developed
further or exchanged for a better model. Thus, validation 1s seen as a stage
in the continuous, cyclical process of model development and not an end
point.

One purpose of the grass model mentioned above is to examine the effects
of different climates and weather patterns, or amounts of controllable inputs
such as water in irrigation or nitrogen fertilizer, on the shoot dry weight.
This is the food available to grazing livestock or for harvest as hay or silage.
In this example it is supposed that the precision (as 95% confidence limits)
with which shoot weight can be measured in the field is =30 g/m?2. It is
unreasonable to expect the model to perform as well as this so a less stringent
criterion of £ 35 g/m? is proposed, which is still of practical use. This definition
in terms of absolute precision is added to the graph of deviations (Fig. 2) as
the envelope of acceptable precision in which at least 95% of points must fall
if the model is to be regarded as adequate for its purpose. In this case two
points lie outside the envelope so strictly speaking the model is not adequate
(28/30 points =93%). Arguably the model is borderline since in practice with
30 points the specified limit is 1!, points outside the envelope which cannot
occur with a single sample of points.

The main ideas in this method are as follows:

1. Attention is concentrated on the deviations (prediction minus observa-
tion) which are displayed graphically along the range of operation of
the model. The uniformity of model performance along the range is
evident. The meaning of the deviations and the graphical method are
easy to understand which is important when non-modellers have to be
convinced of a model’s adequacy.
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Fig. 2. The graph of deviations for empirical validation of the grass model using the data in

Fig. 1. The envelope of acceptable precision shown is =35 g/m>.

2. The criteria for adequacy are defined as the envelope of acceptable

precision and the proportion of points that must lie within it. The
envelope is drawn on the graph of deviations and delimits a region in
which deviations are considered to be acceptably small. The envelope
can be any shape and size, made up of absolute or relative precision, or
both, at different ranges along the x-axis, symmetrical or not about the
horizontal line of zero deviation. The proportion of points can be set at
0-95 by analogy with confidence limits used in statistical analysis of
experiments.

. The definition of the envelope of acceptable precision must be justified

with reference to the purpose of the model. Comparison with the preci-
sion of the observations, particularly where these are routine field mea-
surements that model predictions could replace, is probably the
commonest case. Otherwise the precision of measurements or estimates
of parameter values may be a suitable reference point. In some cases the
precision of a model may be specified externally. for example a legis-
lated safety standard.

The greatest rigour is attained if the envelope of acceptable precision
and proportion of points within are defined before the observations for
validation are examined. Once Fig. 2 is drawn, it 1s easy to imagine how
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an envelope that included 95% of points could be defined by inspection,
to achieve an adequate model.

5. Even if the criteria for adequacy are not defined in advance, the stated
justification (section 3 above) provides some objectivity in this method.
In the example shown the envelope of acceptable precision is based on
the precision of field measurement but with an additional allowance
(17% to obtain the round figure of +35 g/m?) for the model not to be
as good as measurements. The criterion has been set explicitly even if it
is arguable. Similarly, the decision about adequacy of the model is
debatable because of the small number of points, but the basis on which
the decision can be made has been laid out clearly so that it can be
reviewed by anyone.

Statistical tests on the deviations have been proposed for empirical validation.
A paired r-test on the predictions and observations (e.g. Hassall ef al., 1994)
is equivalent to a r-test that the mean deviation does not differ significantly
from zero. This test suffers from the ambiguity of the null hypothesis in
exactly the same way as tests for a slope of 1-0 and intercept of zero in
regression. To get round this, the test can be formulated as a one-way #-test
for the mean deviation being less than a specified value (Reckhow et al.,
1990) when the specification of the critical value is similar to the criterion of
an envelope of acceptable precision. The various forms of z-test are sensitive
to lack of independence in the variate (Reckhow er al., 1990; Mayer et al.,
1994) and also require approximate Normality: assumptions that the method
outlined here does not require.

DISCUSSION

The use of regression for empirical validation has been discussed by Reck-
how et al. (1990), Flavelle (1992) and Mayer er al. (1994). All these workers
recognize the need for an objective and quantitative method for evaluating
models and claim these benefits from regression, and all acknowledge the
problems in satisfying the assumptions. Flavelle (1992) emphasizes that the
familiarity of regression is a particular advantage. Although regression is
widely known and readily available in computer packages, it is poorly
understood judging from its frequent misapplication (Webster, 1989).
Harrison (1990) concluded that regression should not be used for validation
because of the difficulty in meeting the assumptions and the ambiguity when
the null hypothesis cannot be rejected. Mayer er al. (1994) took up this issue,
but did not fully answer all of Harrison’s objections. They demonstrated by
Monte-Carlo simulation that the F-test for regression was a reliable method
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for distinguishing valid models from others; that is to say, models where the
predictions and observations do have a linear relationship with slope of
1-0 and intercept of zero from those having no such relationship. This is
of limited use since most empirical validation is concerned with models
developed well past the initial stage at which the performance is so poor that
the validation data do not give a significant regression.

Reckhow et al. (1990) tackled the ambiguity of null hypothesis tests by
proposing one-tailed z-tests where the estimated regression coefficient is less
or greater than a pre-determined criterion, not just different. Instead of test-
ing the null hypothesis that the slope is 1.0 they set a criterion that the slope
should lie in a defined range around 1-0. However, this poses the question of
whether the limits should be 0-95-1-05 or 0-9-1-1 or any other pair of values.
Although Flavelle (1992) interprets the slope of the line in a general way in
terms of model bias, there is no direct, quantitative relationship of the slope
of the fitted line to the performance of the model. Thus, there is no objective
way to select limits for the slope that are relevant to model performance.

In conclusion, regression is inappropriate for empirical validation, except
perhaps in the very early stages of evaluation of competing models envisaged
by Mayer et al. (1994). (Their title claims great generality: ‘an appropriate
overall test of model validity’, but I believe that ‘initial’ instead of ‘overall’
would be more realistic.) Even in these limited circumstances I would argue
that choice among competing models should be made after structural (con-
ceptual) validation and that empirical validation—comparison of predictions
and observations—is premature. The alternative method proposed (Mitchell
& Sheehy, 1997) does not depend on satisfying the assumptions necessary for
statistical tests, and can be made rigorous, objective and quantitative. It can
be made objective in the sense that the criteria are explicit and relevant to the
purpose of the model; if the criteria are agreed then application of the
method by anyone will produce the same result. The method is flexible and
can be applied to different sorts of data: spot comparisons, time courses, or
spatial sequences. In addition, it is easy to understand which is vital if non-
modellers are to be convinced of the power and utility of modelling.
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APPENDIX

This demonstration of how easy it is to obtain significant regressions is not a
mathematical proof but I believe that it is a valid way of summarizing prac-
tical experience with regressions. Here the regression is tested with the most
familiar null hypothesis that the slope is zero. From a table of random
numbers, 100 were selected with values between 0 and 99. The second 50 were
aligned against the first 50 to create random points when plotted in Fig. 3(a).
As expected, a regression of all 50 points is not significant. Pairs of points
were removed successively from the initial set, each pair consisting of the
farthest point in the top left and bottom right corners. After removing three
pairs a significant regression first occurs (P < 0-05, r>=0-11, n =44, Fig. 3(b)).
Removal of one more pair increases the significance to P<0-01 (»>=0-17,
n=42; Fig. 3(c)). When two further pairs are removed a still more significant
regression can be obtained (P <0-001, r>=0-30, n=238; Fig. 3(d)). The 38
points in Fig. 3(d) constitute a broad band remaining after six points in each
of two opposite corners have been removed from the original random 50.
This broad band boasts a very highly significant regression line, although the
line explains only 30% of the variation.

In empirical validation the data rarely exhibit as much scatter as the points
in Fig. 3(d) but the regression has already used up the practical scale of sig-
nificance. That is to say, the regression has passed the three conventional
levels of significance P <0-05, 0-01 and 0-001. Quantitative comparisons of
the significance of regression lines can hardly be made once all the lines are
significant at P <0-001, as is generally the case in empirical validation.

NOTE ADDED TO PROOF

Kleynen ez al. (1997) give a methematical proof that the regression of pre-
dictions on observations is an incorrect method of empirical validation. They
propose an alternative in which the deviations are regressed on the sums of
observation and prediction, and a simultaneous F-test is used on the joint
hypothesis that for this line both intercept and slope are zero. If the
hypothesis is rejected, the model i1s not valid. The assumptions are that
observations and predictions are positively correlated (well-founded—see
third objection above) and that the sets of observations and predictions are
each Normally and independently distributed

Kleynen, J. P. C., Bettonvil, B. & Groenendaal, W. (1997). Validation of trace-
driven simulation models: a novel regression test. Management Science (in
press).
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Fig. 3. Fifty random points (a) and subsets created by removing successively pairs of points

from top left and bottom right corners. The subsets shown are those where the regression line

first exceeds a significance level: n=44, P<0-05 in (b); =42, P<0-01 in (c); and n=138,
P <0-001 in (d).
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